Synthesis of some Newer 5-(5-Aryl-2*H*-tetrazol-2-ylmethyl)-4-substituted-s-triazole-3-thiols as Possible Antiinflammatory Agents

Paresh J. Kothari, Shiva P. Singh, Surendra S. Parmar and Virgil I. Stenberg

Departments of Chemistry and Physiology, University of North Dakota, Grand Forks, North Dakota 58202, U.S.A. Received February 5, 1980

Several 1-(5-aryl-2*H*-tetrazol-2-ylacetyl)-4-substituted thiosemicarbazides and 5-(5-aryl-2*H*-tetrazol-2-ylmethyl)-4-substituted-s-triazole-3-thiols were synthesized as possible antiinflammatory agents. These compounds were characterized by their elemental, infrared and nuclear magnetic resonance analysis.

J. Heterocyclic Chem., 17, 1393 (1980).

Diverse pharmacological properties have been found to be associated with triazole derivatives (1-8). These include antiinflammatory, anticholinergic, antidepressant, analgesic, sedative, antihypertensive, antiasthmatic, and tranquilizing properties. Earlier studies have reported several tetrazole derivatives to be active antiinflammatory agents (9-13). The clinical use of 5-amino-1-phenyl tetrazol in patients with rheumatoid arthritis, who had previously failed to respond to salicyclic acid, phenylbutazone, indomethacin or corticosteroids (14,15), prompted synthesis of several 1-(5-aryl-2H-tetrazol-2-ylacetyl)-4-substituted thiosemicarbazides and their cyclized derivatives, 5-(5-aryl-2H-tetrazol-2-ylmethyl)-4-substituted-s-triazol-3thiols, as possible antiinflammatory agents. The synthesis of aforesaid compounds was carried out according to the steps outlined in Scheme I.

Various 5-aryltetrazoles (6-10) were obtained by the reaction of appropriate benzonitrile (1-5) with sodium azide in the presence of ammonium chloride where a nucleophilic attack of the azide ion (N₃) on the nitrile carbon is followed by cyclization of the iminoazide (16). These compounds were further treated with ethyl bromoacetate in the presence of sodium ethoxide to give ethyl 5-aryl-2Htetrazol-2-vlacetate (11-15). The reaction of suitable acetate 11-15 with hydazine hydrate in absolute ethanol yielded 5-aryl-2H-tetrazol-2-ylacethydrazides (16-20). The acethydrazide, on refluxing with appropriate aryl isothiocyanate in absolute ethanol, gave 1-(5-aryl-2H-tetrazol-2ylacetyl)-4-substituted thiosemicarbazides (21-46). Finally, the cyclization of 21-46 to the corresponding 5-(5-aryl-2H-tetrazol-2-ylmethyl)-4-substituted-s-triazol-3-thiols (47-78) was achieved by refluxing 21-46 in the presence of 2N sodium hydroxide solution.

The infrared spectra of 21-46 exhibited characteristic broad N-H stretching absorption bands in the region between 3060-3340 cm⁻¹. The C=O stretching bands were observed between 1700-1735 cm⁻¹. The regions where C=N stretching and C=C stretching of aromatic ring occur are found to overlap in these spectra and these absorption were observed between 1680-1490 cm⁻¹. The infrared spectra of 47-78 showed a characteristic C=S

$$R \longrightarrow C \equiv N \xrightarrow{(2) \text{ Na N}_3} \xrightarrow{(3) \text{ NH}_4\text{CI}} \qquad R \longrightarrow N \text{ NH}$$

$$1 - 5 \longrightarrow (2) \text{ Na N}_3 \longrightarrow R \longrightarrow N \text{ NH}$$

$$(4) 2 \text{ NHCI} \longrightarrow (6 - 10)$$

$$(1) C_2 H_5 O H$$

$$(2) \text{ Na} \longrightarrow (3) \text{ Br } CH_2 CO_2 C_2 H_5$$

$$(2) \text{ Na} \longrightarrow (2) \text{ NH}_2 \times H_2 O \longrightarrow (3) \text{ Br } CH_2 CO_2 C_2 H_5$$

$$(1) C_2 H_5 O H$$

$$(2) \longrightarrow N \text{ NH}_2 \times H_2 O \longrightarrow (1) \text{ NH$$

stretching band in the region of 1340-1310 cm⁻¹. As reported earlier, the thiol predominantly exists in its tautomeric thione form by protonating the adjacent nitrogen atom (17,18). The bands in the region of 1660-1490 cm⁻¹ are assigned to C=N stretching and C=C stretching of aromatic ring.

Scheme I

In the nuclear magnetic resonance spectra of **21-46**, the $-\mathrm{CH}_{2}$ - protons appeared as a singlet in the range of δ 5.60-5.70. The aromatic protons of these compounds exhibited multiplets in the range of δ 6.60-8.30. The signals due to -NH- protons of the thiosemicarbazide part appeared in the region of δ 9.20-11.00. The assignment of these signals to the -NH- protons is supported by the fact

Table I

Physical Constants of 5-Aryl-2H-tetrazol-2-ylacethydrazides

Compound	d(a) R	Melting Point	Yield	Recrystallization	n Molecular			Analy	sis %		
No.		°C	%	Solvent	Formula		Calcd.			Found	
						С	H	N	С	H	N
16	Н	206-207.5	95	Ethanol	C ₉ H ₁₀ N ₆ O	_	_	_	_	_	
17	OCH,	191-192	92	Ethanol	$C_{10}H_{12}N_6O_2$	48.38	4.84	33.87	48.42	4.77	33.65
18	F	211-212	95	Ethanol	C,H,FN,O	45.76	3.81	35.59	45.46	4.05	35.38
19	CI	238-239	95	Ethanol- -Water	C,H,ClN ₆ O	42.77	3.56	33.26	42.51	3.32	33.57
20	Br	237-238	98	DMF-Water	C ₉ H ₉ BrN ₆ O	36.36	3.03	28.28	36.50	2.87	28.42

⁽a) Compound 16 was reported earlier (23).

Table II

Physical Constants of 1-(5-Aryl-2*H*-tetrazol-2-ylacetyl)-4-substituted Thiosemicarbazides (21-52)

Compound	R	R,	Melting Point	Yield	Molecular			Elemental	Analysis %		
No.			°C	%	Formula		Calcd.		•	Found	
						· C	Н	N	С	Н	N
21	OCH ₃	Н	159.5-162	98	$C_{17}H_{17}N_7O_2S$	53.26	4.43	25.58	53.15	4.33	25.79
22	OCH ₃	2-CH ₃	135-136.5	98	$C_{18}H_{19}N_{7}O_{2}S$	54.40	4.78	24.68	54.16	4.74	24.86
23	OCH ₃	3-CH ₃	145-146.5	98	$C_{18}H_{19}N_{7}O_{2}S$	54.40	4.78	24.68	54.21	4.85	24.65
24	OCH,	4-CH ₃	175-177	94	$C_{18}H_{19}N_{7}O_{2}S$	54.40	4.78	24.68	54.43	4.79	24.78
25	OCH ₃	$3,4(CH_3)_2$	155-157	91	$C_{19}H_{21}N_{7}O_{2}S$	55.47	5.10	23.84	55.79	5.14	23.68
26	OCH ₃	2-OC ₂ H ₅	200-201.5	91	$C_{19}H_{21}N_{7}O_{3}S$	53.39	4.91	22.95	53.15	4.79	23.24
27	OCH ₃	4-Cl	173-176	93	$C_{17}H_{16}CIN_7O_2S$	48.86	3.83	23.47	48.61	3.74	23.60
28	F	H	215 dec.	96	$C_{16}H_{14}FN_{7}OS$	51.75	3.77	26.41	51.61	3.80	26.59
29	F	2-CH ₃	158-159	98	$C_{17}H_{16}FN_{7}OS$	52.98	4.16	25.45	52.87	4.03	25.41
30	F	3-CH ₃	165-166	95	C ₁₇ H ₁₆ FN ₂ OS	52.98	4.16	25.45	52.75	4.39	25.32
31	F	4-CH ₃	227 dec.	98	C ₁₇ H ₁₆ FN ₇ OS	52.98	4.16	25.45	52.83	4.12	25.38
32	F	3,4(CH ₃) ₂	166-168	94	C ₁₈ H ₁₈ FN ₇ OS	54.13	4.51	24.56	53.92	4.35	24.68
33	F	2-OC ₂ H ₅	208.5-210	94	C ₁₈ H ₁₈ FN ₇ O ₂ S	52.05	4.33	23.61	52.27	4.19	23.84
34	F	4-Cl	208-210	95	C ₁₆ H ₁₃ FCIN ₇ OS	47.35	3.21	24.17	47.61	3.07	24.33
35	Cl	2-CH ₃	224-226	89	C ₁₇ H ₁₆ CIN,OS	50.81	3.98	24.41	50.83	4.03	24.65
36	Cl	3-CH ₃	224.5-226.5	93	C ₁₇ H ₁₆ ClN ₇ OS	50.81	3.98	24.41	50.72	3.92	24.26
37	Cl	4-CH ₃	226-230 dec.	95	C ₁₇ H ₁₆ CIN ₂ OS	50.81	3.98	24.41	50.65	3.72	24.67
38	Cl	3,4(CH ₃) ₂	197-198 dec.	91	C ₁₈ H ₁₈ CIN ₇ OS	51.98	4.33	23.59	51.82	4.18	23.41
39	Cl	2-OC ₂ H ₅	227-228	96	$C_{18}H_{18}CIN_7O_2S$	50.05	4.17	22.71	49.98	4.19	22.70
40	Cl	4-Cl	208-210	98	C ₁₆ H ₁₃ Cl ₂ N ₇ OS	45.49	3.08	23.22	45.31	3.25	23.07
41	Br	2-CH ₃	214-217 dec.	94	C ₁₇ H ₁₆ BrN ₇ OS	45.84	3.59	22.02	45.98	3.63	22.11
42	Br	3-CH ₃	200-201.5	93	C ₁₇ H ₁₆ BrN ₇ OS	45.84	3.59	22.02	45.78	3.57	22.06
43	Br	4-CH ₃	220-221	98	C ₁₇ H ₁₆ BrN ₇ OS	45.84	3.59	22.02	45.79	3.46	21.84
44	Br	3,4(CH ₃) ₂	175-177	95	C ₁₈ H ₁₈ BrN ₇ OS	47.06	3.92	21.35	47.21	3.84	21.29
45	Br	2-OC ₂ H ₅	201-202	94	C ₁₈ H ₁₈ BrN ₇ O ₂ S	45.47	3.78	20.63	45.24	3.64	20.51
46	Br	4-Cl	211-212	93	C ₁₆ H ₁₃ BrClN ₇ OS	41.27	2.79	21.05	41.26	2.92	21.12

that these protons are readily exchanged with deuterium. Hence, upon addition of deuterium oxide to the sample, these signals disappeared. The signal due to the protons of methylene bridge between the tetrazole and triazole rings of 47-78 appeared in the range of δ 5.90-6.06 whereas the aromatic protons appeared between δ 6.60-8.20. The nuclear magnetic resonance spectra of 5-(5-aryl-2H-tetrazol-2-ylmethyl)-4-(2-ethoxyphenyl)triazol-3-thiols (51,58,65,71,77) gave a quintet instead of quartet for the -OCH₂- protons of -OCH₂-CH₃ substituent present at position 2 of the phenyl ring attached to triazole moiety at

position 4. This unusual phenomenon could be explained on the basis of steric hinderance. When a bulky ethoxy group is attached at position 2 of the phenyl ring, the rotation around N-C bond is restricted and, therefore, the phenyl ring attached at position 4 of the triazole nucleus can orient itself in a plane perpendicular to the plane of the triazole ring. In this orientation the -OCH₂- protons interact with the -CH₂- protons of methylene bridge and appear as a quintet. Also due to the same interaction, the -CH₂- protons of methylene bridge in 51, 58, 65, 71 and 77 appear as a triplet. Two separate singlets were observ-

Table III

Physical Constants of 5-(5-Aryl-2H-tetrazol-2-ylmethyl)-4-substituted-s-triazole-3-thiols (47-78)

Compound	R	R ₁	Melting Point	Yield	Molecular			Elemental A	Analysis %		
No. (a)			°C	%	Formula		Calcd.			Found	
110. (u)						C	Н	N	С	H	N
47	Н	2-CH,	217-218.5	94	C,7H,5N,S	58.45	4.29	28.04	58.60	4.29	28.33
48	H	3-CH ₃	199-200	82	$C_{17}H_{15}N_{7}S$	58.45	4.29	28.04	58.31	4.28	28.06
49	H	4-CH ₃	224-225 dec.	94	$C_{17}H_{15}N_7S$	58.45	4.29	28.04	58.37	4.30	27.97
50	H	3,4(CH ₃),	220-221	92	$C_{18}H_{17}N_{7}S$	59.50	4.68	26.99	59.50	4.75	27.04
51	Н	2-OC,H5	181-182	98	$C_{18}H_{17}N_7OS$	56.99	4.48	25.85	57.08	4.52	25.85
52	Н	4-Cl	206-207	90	C ₁₆ H ₁₂ ClN ₇ S	51.96	3.24	26.52	52.02	3.25	26.52
53	OCH,	Н	217-218.5	86	$C_{17}H_{15}N_{7}OS$	55.89	4.10	26.84	55.87	4.19	26.90
54	OCH,	2-CH,	237.5-239	95	$C_{16}H_{17}N_7OS$	56.99	4.48	25.85	56.79	4.22	26.13
55	OCH,	3-CH ₃	202-203	91	$C_{18}H_{17}N_{7}OS$	56.99	4.48	25.85	56.99	4.33	25.85
56	OCH,	4-CH,	235-235.5	90	$C_{18}H_{17}N_7OS$	56.99	4.48	25.85	56.81	4.52	25.94
57	OCH,	3,4(CH ₃) ₂	220-221.5	86	$C_{19}H_{19}N_7OS$	58.01	4.83	24.93	57.88	4.79	25.38
58	OCH ₃	2-OC ₂ H ₅	210-211	86	$C_{19}H_{19}N_7O_2S$	55.74	4.64	23.96	55.62	4.63	24.29
59	OCH,	4-Cl	217-219	92	$C_{17}H_{14}CIN_7OS$	51.06	3.50	24.53	50.85	3.46	24.19
60	F	Н	228-228.5	76	$C_{16}H_{12}FN_7S$	54.39	3.40	27.76	54.23	3.45	27.87
61	F	2-CH ₃	239-240.5	82	$C_{17}H_{14}FN_{7}S$	55.59	3.81	26.70	55.38	3.90	26.82
62	F	3-CH ₃	225-226.5	93	$C_{17}H_{14}FN_7S$	55.59	3.81	26.70	55.58	3.94	26.83
63	F	4-CH ₃	237-238	92	$C_{17}H_{14}FN_7S$	55.59	3.81	26.70	55.70	3.94	26.77
64	F	3,4(CH ₃) ₂	226-227.5	94	$C_{18}H_{16}FN_7S$	56.69	4.20	25.72	56.45	4.26	25.81
65	F	2-OC ₂ H ₅	182.5-184	88	$C_{18}H_{16}FN_7OS$	54.40	4.03	24.69	54.43	4.07	24.74
66	F	4-Cl	229-230	90	C ₁₆ H ₁₁ FClN ₇ S	49.55	2.84	25.29	49.59	2.98	25.20
67	Cl	2-CH ₃	238-239	90	$C_{17}H_{14}ClN_7S$	53.19	3.65	25.55	53.15	3.83	25.71
68	Cl	3-CH ₃	228-229	97	C ₁₇ H ₁₄ ClN ₇ S	53.19	3.65	25.55	53.05	3.61	25.59
69	Cl	4-CH ₃	243-244	97	$C_{17}H_{14}CIN_7S$	53.19	3.65	25.55	53.10	3.60	25.67
70	Cl	3,4(CH ₃) ₂	234 dec.	98	$C_{18}H_{16}CIN_7S$	54.34	4.03	24.65	54.15	3.97	24.72
71	Cl	2-OC ₂ H ₅	199-200.5	98	$C_{18}H_{16}CIN_7OS$	52.23	3.86	23.70	52.10	3.77	23.42
72	Cl	4-Cl	221-223	84	$C_{16}H_{11}Cl_2N_7S$	47.52	2.72	24.25	47.39	2.82	24.26
73	Br	2-CH ₃	221-222.5	100	$C_{17}H_{14}BrN_7S$	47.78	3.28	22.95	47.55	3.24	22.81
74	Br	3-CH ₃	228-229	95	$C_{17}H_{14}BrN_7S$	47.78	3.28	22.95	47.92	3.41	23.01
75	Br	4-CH ₃	245 dec.	100	$C_{17}H_{14}BrN_7S$	47.78	3.28	22.95	47.80	3.35	23.02
76	Br	3,4(CH ₃) ₂	228 dec.	88	$C_{18}H_{16}BrN_7S$	48.98	3.63	22.22	48.85	3.48	22.39
77	Br	2-OC ₂ H ₅	135-136	93	C ₁₈ H ₁₆ BrN ₇ OS	47.26	3.50	21.44	47.35	3.83	21.29
78	Br	4-Cl	128-130	100	$C_{16}H_{11}BrClN_7S$	42.90	2.46	21.90	43.02	2.58	21.92

(a) The precursors of compounds 47 to 52 are reported earlier (23).

ed for the methyl groups present at position 3 and 4 in 50, 57, 64, 70, and 76 while in 25, 32, 38, and 44 both methyl groups exhibited only one singlet. These results indicated that the protons of the methyl groups are magnetically equivalent in 25, 32, 38, and 44 and nonequivalent in 50, 57, 64, 70, and 76.

EXPERIMENTAL

All compounds were analyzed for their carbon, hydrogen, and nitrogen contents. The melting points of these compounds were determined using Fisher-John's melting point apparatus and are uncorrected. Infrared (ir) spectra of all the compounds were recorded in nujol as a mull using a Beckman Model-33 double beam infrared spectrophotometer. Nuclear magnetic resonance (nmr) spectra were recorded on a Varian Associates 90 MHz EM-390 instrument using deuterated dimethylsulfoxide (DMSO-d6) as a solvent and tetramethylsilane as an internal reference.

Benzonitrile, 4-chlorobenzonitrile, and 4-methoxybenzonitrile were purchased from Aldrich Chemical Co., Milwaukee, Wisconsin, while 4-bromobenzonitrile and 4-fluorobenzonitrile were obtained from PCR,

Inc., Gainesville, Florida. Ethyl bromoacetate and phenylisothiocyanate were ordered from Eastman Kodak Company, Rochester, New York, and various arylisothiocyanates were purchased from Trans World Chemicals, Inc., Washington, D.C.

5-Aryltetrazoles (6-10).

A mixture of the appropriate benzonitrile (0.2 mole), sodium azide (0.22 mole) and ammonium chloride (0.22 mole) in 200 ml. of dimethylformamide (DMF) was refluxed for 17 hours with stirring in an oil bath maintained at 127°. The DMF was removed by distilling under reduced pressure and the residue was suspended in cold water and acidified to pH 2 using 2N hydrochloric acid. The solid which separated out was filtered, washed with water and recrystallized from ethanol (19-21).

Ethyl 5-Aryl-2H-tetrazol-2-ylacetate (11-15).

The appropriate 5-aryltetrazole (0.1 mole) was dissolved in a solution of sodium (0.1 g. atom) in 200 ml. of absolute ethanol. The solution was refluxed in an oil bath with stirring and to this ethyl bromoacetate (0.1 mole) was added slowly. After refluxing for 16 hours, the reaction mixture was filtered while hot and the excess of the solvent was removed on a rotary vacuum evaporator. The crude ester thus obtained was

Table IV

Infrared and Nuclear Magnetic Resonance Spectral Data of 1-(5-Aryl-2H-tetrazol-2-ylacetyl)-4-substituted Thiosemicarbazides (21-46)

		T A1 .	. D d - (-) (1)		N Ch	emical Shifts (b) (δ)	
Compound	N II Canada		ion Bands (a), (cm ⁻¹) C=N Stretch/	-CH ₂ -	Aromatic	NH R	R,
No.	N-H Stretch	C=0 Stretch	C=C Stretch	-0117-	momane		
21	3360 (m br) 3260 (m br)	1770 (s)	1620 (m), 1610 (m) 1565 (m sh) 1510 (s sh)	5.6 (s)	7.0-8.1 (m)	9.8-11.0 (br) 3.8 (s)	
99	3140 (m br)	1700 (s)	1620 (m)	5.6 (s)	6.9-8.3 (m)	9.6-11.0 (br) 3.8 (s)	2.16 (s)
22	3230 (s br)	1700 (s) 1730 (m)	1630 (m), 1555 (m sh)		6.8-8.0 (m)	9.6-11.0 (br) 3.77 (s)	2.23 (s)
23	3280 (m br)	1730 (m) 1720 (s)	1620 (w), 1520 (m sh)		7.0-8.1 (m)	9.66 (s) 3.8 (s)	2.27 (s)
24	3260 (m br)	1120 (5)	1020 (WK 1020 (III SII)	0.01 (3)	1.0-0.1 (111)	9.7-11.0 (br)	
25	3160 (m br) 3280-3270 (m br)	1710 (m)	1620 (m), 1550 (m br)	5.6 (s)	7.0-8.1 (m)	9.6 (s) 3.8 (s) 9.6-11.0 (br)	2.2 (s)
26	3340 (m)	1710 (s)	1620 (s), 1560 (s)	5.6 (s)	6.7-8.1 (m)	9.16 (s) 3.8 (s)	4.03 (q)
20	3260 (m br)	1110 (0)	1000 (-), (-)	(.,	` ,	9.8 (s)	1.33 (t)
	3160 (m br)					10.63 (br)	
27	3240 (m br)	1710 (m)	1620 (m), 1550 (m br)	5.6 (s)	6.9-8.2 (m)	9.8 (s) 3.8 (s)	
				5.7 (s)	7.0-8.3 (m)	9.8-11.0 (br) 9.83 (s)	
28	3300 (m br)	1710 (m)	1610 (w br) 1555 (m br) 1505 (w)	3.7 (S)	1.0-0.3 (III)	10.66 (br)	
29	3340 (w sh)	1725 (m)	1615 (w), 1595 (vw)	5.63 (s)	7.0-8.3 (m)	9.6 (s)	2.16 (s)
	3220 (m) 3120 (m)	1700 (s)	1535 (m)			10.0 (s) 10.66 (s)	
30	3280 (m br)	1700 (s)	1615 (m), 1540 (s)	5.66 (s)	6.8-8.2 (m)	9.8 (s) 10.66 (br)	2.26 (s)
31	3320 (w)	1735 (m)	1610 (m), 1565 (m)	5.66 (s)	7.0-8.2 (m)	9.73 (s)	2.27 (s)
V -	3250 (w br)	, ,	1520 (m)			10.66 (br)	
32	3240 (m br)	1725 (m) 1705 (m)	1600 (w), 1535 (w)	5.66 (s)	6.9-8.2 (m)	9.66 (br s)	2.17 (s)
33	3320 (m)	1710 (m)	1610 (w), 1540 (w)	5.66 (s)	6.7-8.2 (m)	9.2 (s)	4.03 (q)
•	3240 (m br)		\ <i>/</i> / \ <i>/</i> /	,,,		9.9 (br) 10.73 (s)	1.33 (t)
34	3260 (m) 3200 (w sh)	1705 (m)	1605 (w), 1535 (w)	5.63 (s)	7.2-8.2 (m)	9.8 (s) 10.6 (br)	
35	3320 (m) 3260 (w sh)	1710 (s)	1605 (m), 1540 (s)	5.63 (s)	7.0-8.2 (m)	9.53 (s) 9.66 (s)	2.16 (s)
					(000()	10.63 (s)	0.06 (-)
36	3280 (m br)	1705 (s)	1610 (w), 1540 (s)	5.66 (s)	6.8-8.2 (m)	9.66 (s)	2.26 (s)
	3180 (m br)		` 1490 (m)			10.6 (br)	0.2 (-)
37	3320 (m)	1730 (s)	1670 (m), 1610 (m)	5.66(s)	7.0-8.2 (m)	9.7 (s)	2.3 (s)
	3250 (m br)		1560 (s), 1520 (w)		(001()	10.6 (br)	0.0 (-)
38	3220 (s)	1710 (s)	1600 (w), 1540 (m)	5.66 (s)	6.9-8.1 (m)	9.8 (s) 10.66 (br)	2.2 (s)
39	3280 (s)	1715 (s)	1610 (m), 1550 (s)	5.66 (s)	6.6-8.3 (m)	9.16 (s) 9.86 (s)	4.06 (q) 1.33 (t)
40	3200 (m br)	1700 (m sh)	1680 (s), 1610 (w)	5.7 (s)	7.0-8.2 (m)	10.7 (s) 9.8 (s)	
			1560 (m br)			9.8-11.0 (br)	
41	3200 (s br)	1700 (s)	1610 (m), 1530 (s br)	5.66 (s)	7.1-8.2 (m)	9.57 (s) 9.75 (s) 10.7 (s)	2.2 (s)
40	2070 ()	1700 (-)	1670 (m), 1610 (m)	5.66 (s)	6.8-8.1 (m)	9.7 (s)	2.3 (s)
42	3270 (s) 3170 (s br)	1700 (s)	1540 (s), 1490 (s)	J.JU (8)	5.5-5.1 (m)	10.8 (br)	
43	3210 (m br)	1715 (m)	1690 (m), 1610 (w)	5.66 (s)	7.0-8.2 (m)	9.7 (s) 10.8 (br)	2.3 (s)
4.4	2220 (h-)	1710 (s)	1580 (w), 1550 (w) 1620 (w), 1545 (w)	5.6 (s)	7.0-8.2 (m)	9.8 (s)	2.16 (s)
44	3220 (m br)	1,10 (8)	1020 (W), 1040 (W)	0.0 (3)	1.0-0.2 (III)	10.60 (br)	
AE	3180 (m br)	1710 (s)	1610 (m), 1550 (s)	5.66 (s)	6.7-8.2 (m)	9.16 (s)	4.03 (q)
45	3270 (s br)	1110 (9)	1010 (111), 1000 (8)	0.00 (5)	0.1 0.2 (m)	9.83 (br s) 10.8 (s)	1.33 (t)

46 3240 (s br) 1725 (s) 1690 (m), 1620 (w) 5.63 (s) 7.2-8.1 (m) 9.8 (s) 1560 (s), 1510 (s)

Table V

Infrared and Nuclear Magnetic Resonance Spectral Data of 5-(5-Aryl-2H-tetrazol-2-ylmethyl)-4-substituted-s-triazole-3-thiols (47-78)

Compound No. C=N Stretch C=S Stretch C	
1500 (m), 1495 (s) 1330 (m) 6.0 (s) 6.8-8.0 (m) 1525 (m), 1500 (w) 1525 (m), 1500 (w) 1525 (m), 1500 (w) 1525 (m), 1500 (m) 1325 (m) 6.0 (s) 7.0-8.0 (m) 1490 (s) 1600 (w), 1590 (m) 1325 (m) 5.96 (s) 6.6-8.0 (m) 1540 (m), 1510 (m) 1510 (m) 1510 (m) 1510 (m) 1510 (m) 1525 (m) 5.9 (t) 6.8-8.2 (m) 1540 (w), 1510 (m) 1335 (m) 6.06 (s) 7.2-8.1 (m) 1495 (m) 1495 (m) 1495 (m) 1535 (s), 1505 (m) 1330 (s) 5.77 (s) 6.9-7.9 (m) 3.77 (s) 1535 (s), 1590 (m) 1330 (s) 5.77 (s) 6.9-8.0 (m) 3.8 (s) 1540 (m), 1590 (m) 1330 (s) 5.77 (s) 6.8-8.0 (m) 3.8 (s) 1530 (m), 1500 (m) 1300 (s) 5.97 (s) 6.8-8.0 (m) 3.8 (s) 1510 (s) 1510 (s) 1510 (s) 1520 (s) 5.87 (t) 6.8-8.0 (m) 3.8 (s) 1510 (s) 1510 (s) 1500 (m) 1330 (s) 6.0 (s) 6.8-8.0 (m) 3.8 (s) 1510 (s) 1510 (s) 1500 (m) 1330 (s) 6.0 (s) 6.8-8.0 (m) 3.8 (s) 1510 (s) 1500 (m) 1330 (s) 6.0 (s) 6.8-8.0 (m) 3.8 (s) 1510 (s) 1500 (m) 1330 (s) 6.0 (s) 7.2-8.2 (m) 1510 (s) 1500 (m) 1535 (m) 1500 (m) 1330 (m) 6.0 (s) 7.1-8.2 (m) 1535 (m) 1500 (s) 1535 (m) 1500 (s) 1330 (m) 6.0 (s) 7.1-8.2 (m) 1535 (m) 1500 (s) 1530 (m)	R,
1640 (s), 1590 (w) 1330 (m) 6.0 (s) 6.8-8.0 (m) 1525 (m), 1500 (w) 1325 (m) 6.0 (s) 7.0-8.0 (m) 1490 (s) 1590 (w), 1540 (m) 1325 (m) 5.96 (s) 6.6-8.0 (m) 1540 (m), 1510 (m) 1540 (w), 1590 (m) 1335 (m) 6.06 (s) 7.2-8.1 (m) 1495 (m) 1535 (s), 1505 (m) 1335 (s), 1505 (m) 1530 (m), 1590 (m) 1330 (s) 5.77 (s) 6.9-8.0 (m) 3.8 (s) 1540 (w), 1580 (w) 1310 (w) 6.0 (s) 6.8-8.0 (m) 3.8 (s) 1540 (m), 1500 (m) 1330 (s) 5.77 (s) 6.9-8.0 (m) 3.8 (s) 1540 (m), 1500 (m) 1310 (w) 6.0 (s) 6.8-8.0 (m) 3.8 (s) 1540 (m), 1500 (m) 5.96 (s) 6.8-8.0 (m) 3.8 (s) 1530 (m), 1580 (w) 1310 (m) 5.96 (s) 6.8-8.0 (m) 3.8 (s) 1510 (s) 1500 (m) 1330 (s) 6.0 (s) 7.2-8.2 (m) 1510 (s) 1500 (m) 1330 (s) 6.0 (s) 7.2-8.2 (m) 1510 (s) 1500 (m) 1330 (s) 6.0 (s) 7.2-8.2 (m) 1530 (m), 1575 (m) 1325 (m) 6.0 (s) 7.1-8.2 (m) 1535 (m), 1590 (m) 1335 (m) 6.0 (s) 7.1-8.2 (m) 1535 (m), 1590 (m) 1335 (m) 6.0 (s) 7.2-8.2 (m) 1535 (m), 1590 (m) 1335 (m) 6.0 (s) 7.2-8.2 (m) 1535 (m), 1590 (m) 1335 (m) 6.0 (s) 7.2-8.2 (m) 1530 (m), 1585 (m) 1300 (m) 5.97 (s) 7.1-8.2 (m) 1535 (m), 1590 (m) 1310 (m) 5.97 (s) 7.1-8.0 (m) 1540 (m), 1590 (m) 1335 (m) 6.0 (s) 7.2-8.2 (m) 1535 (m), 1590 (m) 1310 (m) 5.97 (s) 7.1-8.0 (m) 1540 (m), 1590 (m) 1310 (m) 5.97 (s) 7.1-8.0 (m) 1540 (m), 1590 (m) 1310 (m) 5.97 (s) 7.1-8.0 (m) 1540 (m), 1590 (m) 1310 (m) 5.97 (s) 7.1-8.0 (m) 1540 (m), 1590 (m) 1310 (m) 5.97 (s) 7.1-8.0 (m) 1540 (m), 1590 (m) 1310 (m) 5.97 (s) 7.1-8.0 (m) 1540 (m), 1590 (m) 1310 (m) 5.97 (s) 7.1-8.0 (m) 1540 (m), 1590 (m) 1310 (m) 5.97 (s) 7.1-8.0 (m) 1540 (m), 1590 (m)	1.87 (s)
49	2.2 (s)
50	2.3 (s)
51	2.03 (s) 2.1 (s)
52	3.86 (qu) 1.06 (t)
53	
54	
55	1.87 (s)
56	2.2 (s)
57	2.3 (s)
1510 (s) 59	2.06 (s) 2.16 (s)
1310 (s) 60	3.8 (qu) 1.06 (t)
60	
61	
62 1620 (m), 1575 (m) 1325 (m) 6.03 (s) 6.8-8.2 (m) 1540 (w), 1490 (s) 63 1620 (w), 1590 (w) 1330 (m) 6.0 (s) 7.1-8.2 (m) 1535 (m), 1500 (s) 64 1620 (m), 1580 (m) 1335 (m) 6.0 (s) 6.7-8.1 (m) 1540 (w), 1495 (w) 65 1600 (w), 1585 (m) 1305 (s) 5.90 (t) 6.8-8.3 (m) 1540 (m), 1500 (s) 66 1620 (w), 1590 (m) 1310 (m) 6.06 (s) 7.2-8.2 (m) 1535 (w), 1490 (w) 67 1600 (w), 1590 (m) 1310 (m) 5.97 (s) 7.1-8.0 (m) 1540 (m), 1490 (m) 68 1615 (m), 1580 (s) 1330 (m) 6.0 (s) 6.8-8.1 (m) 1490 (s) 69 1620 (vw), 1590 (vw) 1335 (m) 6.0 (s) 7.0-8.0 (m) 1530 (w), 1550 (w)	1.87 (s)
63	2.2 (s)
64 1620 (m), 1580 (m) 1335 (m) 6.0 (s) 6.7-8.1 (m) 1540 (w), 1495 (w) 65 1600 (w), 1585 (m) 1305 (s) 5.90 (t) 6.8-8.3 (m) 1540 (m), 1500 (s) 66 1620 (w), 1590 (m) 1310 (m) 6.06 (s) 7.2-8.2 (m) 1535 (w), 1490 (w) 67 1600 (w), 1590 (m) 1310 (m) 5.97 (s) 7.1-8.0 (m) 1540 (m), 1490 (m) 68 1615 (m), 1580 (s) 1330 (m) 6.0 (s) 6.8-8.1 (m) 1490 (s) 69 1620 (vw), 1590 (vw) 1335 (m) 6.0 (s) 7.0-8.0 (m) 1530 (w), 1550 (w)	2.3 (s)
65 1600 (w), 1585 (m) 1305 (s) 5.90 (t) 6.8-8.3 (m) 1540 (m), 1500 (s) 66 1620 (w), 1590 (m) 1310 (m) 6.06 (s) 7.2-8.2 (m) 1535 (w), 1490 (w) 67 1600 (w), 1590 (m) 1310 (m) 5.97 (s) 7.1-8.0 (m) 1540 (m), 1490 (m) 68 1615 (m), 1580 (s) 1330 (m) 6.0 (s) 6.8-8.1 (m) 1490 (s) 69 1620 (vw), 1590 (vw) 1335 (m) 6.0 (s) 7.0-8.0 (m) 1530 (w), 1550 (w)	2.1 (s) 2.16 (s)
66 1620 (w), 1590 (m) 1310 (m) 6.06 (s) 7.2-8.2 (m) 1535 (w), 1490 (w) 67 1600 (w), 1590 (m) 1310 (m) 5.97 (s) 7.1-8.0 (m) 1540 (m), 1490 (m) 68 1615 (m), 1580 (s) 1330 (m) 6.0 (s) 6.8-8.1 (m) 1490 (s) 69 1620 (vw), 1590 (vw) 1335 (m) 6.0 (s) 7.0-8.0 (m) 1530 (w), 1550 (w)	3.9 (qu) 1.06 (t)
67 1600 (w), 1590 (m) 1310 (m) 5.97 (s) 7.1-8.0 (m) 1540 (m), 1490 (m) 68 1615 (m), 1580 (s) 1330 (m) 6.0 (s) 6.8-8.1 (m) 1490 (s) 69 1620 (vw), 1590 (vw) 1335 (m) 6.0 (s) 7.0-8.0 (m) 1530 (w), 1550 (w)	
68 1615 (m), 1580 (s) 1330 (m) 6.0 (s) 6.8-8.1 (m) 1490 (s) 69 1620 (vw), 1590 (vw) 1335 (m) 6.0 (s) 7.0-8.0 (m) 1530 (w), 1550 (w)	1.87 (s)
69 1620 (vw), 1590 (vw) 1335 (m) 6.0 (s) 7.0-8.0 (m) 1530 (w), 1550 (w)	2.2 (s)
	2.26 (s)
70 1610 (w), 1590 (m) 1315 (m) 5.97 (s) 7.1-8.0 (m) 1535 (w), 1495 (w)	2.06 (s) 2.16 (s)
71 1660 (s), 1610 (m) 1330 (m) 5.93 (t) 6.8-8.2 (m) 1570 (s) 1305 (m)	3.87 (qu) 1.1 (t)

⁽a) The intensities of the infrared absorption bands are denoted by: s = strong, m = medium w = weak, br = broad, sh = shoulder. (b) Signal multiplicity in nmr: s = singlet, b = broad, m = multiplet, t = triplet and q = quartet, qu = quintet.

72	1620 (w)	1325 (m)	6.1 (s)	7.1-8.0 (m)	
73	1640 (w), 1615 (w)	1330 (w)	6.0 (s)	7.1-8.2 (m)	1.87 (s)
	1590 (w), 1490 (m)				
74	1610 (w), 1580 (w)	1340 (w)	6.0 (s)	6.8-8.0 (m)	2.16 (s)
	1490 (s)	1330 (m)			
75	1610 (w), 1590 (w)	1325 (m)	6.0 (s)	6.9-8.0 (m)	2.26 (s)
	1520 (m), 1490 (s)				
76	1610 (m), 1590 (m)	1330 (m)	6.0 (s)	6.8-8.0 (m)	2.06 (s)
	1510 (m), 1490 (s)	1305 (w)			2.16 (s)
77	1650 (s), 1600 (m)	1330 (m)	5.9 (t)	6.8-8.0 (m)	3.87 (qu)
	1570 (s), 1490 (s)				1.06 (t)
78	1650 (m br), 1600 (m)	1310 (s)	6.03 (s)	7.2-8.0 (m)	
	1575 (w), 1500 (s)				

(a,b) See footnotes in Table IV.

recrystallized from aqueous ethanol (20-22).

5-Aryl-2H-tetrazol-2-ylacethydrazides (16-20).

A mixture of 0.1 mole of suitable ester 11-15 and 0.15 mole of hydrazine hydrate (99%) in 150 ml. of absolute ethanol was refluxed on an oil bath for 8 hours. The reaction mixture was then concentrated by removing excess ethanol under reduced pressure. The solid which separated out on cooling was filtered and recrystallized from aqueous ethanol. The physical constants of various 5-aryl-2H-tetrazol-2-ylacethydrazides are recorded in Table I.

1-(5-Aryl-2H-tetrazol-2-ylacetyl)-4-substituted Thiosemicarbazides (21-46).

Equimolar quantities of the appropriate hydrazide 16-20 (0.01 mole) and suitable aryl isothiocyanate (0.01 mole) were refluxed in 50 ml. of absolute ethanol for 1 hour. The excess of ethanol was removed under reduced pressure using a rotary vacuum evaporator. The solid residue which separated out on cooling was filtered and recrystallized from aqueous dimethylformamide. Physical data for the various 1-(5-aryl-2H-tetrazol-2-yl)-4-substituted thiosemicarbazides are listed in Tables II and IV.

5-(5-Aryl-2H-tetrazol-2-ylmethyl)-4-substituted-s-triazol-3-thiols (47-78).

To the suitable 1-(5-aryl-2H-tetrazol-2-ylacetyl)-4-substituted thiosemicarbazide (0.005 mole) was added 50 ml. of 2N sodium hydroxide and the mixture was refluxed for 2-3 hours. The reaction mixture was cooled, filtered and the filtrate was acidified to pH 2 using 2N hydrochloric acid. In some cases where the solid separated upon cooling, the reaction mixture was filtered and acidified while hot. The precipitate thus obtained was filtered, washed with ice-cold water and dried. The crude product was recrystallized from dimethylformamide. The various triazoles were characterized by their sharp melting points, elemental analyses and ir and nmr spectral data (Tables III and V).

Acknowledgement.

The authors wish to express their thanks to Dr. Roland G. Severson and Dr. Stanley J. Brumleve for their advice and encouragement. This investigation was supported in part by USPHS Research Carrier Award (1-D4-GM-09888) to V. I. Stenberg. Grateful acknowledgement is made to Dr. Earl J. Freise, Director, Research and Program Development at the University of North Dakota and the Dakota State Aerie Fraternal Order of Eagles for providing research support.

REFERENCES AND NOTES

- (1) T. Denzel and H. Hoehn, U. S. Patent 3,971,801 (1976); Chem. Abstr., 86, P 16675k (1977).
- (2) H. E. Erickson and G. L. Florvall, German Patent, 2,553,520 (1976); Chem. Abstr., 85, P 177428b (1976).
- (3) J. J. Baldwin and F. C. Novello, U. S. Patent 3,987,054 (1976); Chem. Abstr., 85, 177435b (1976).
- (4) F. G. F. Eloy and R. W. Shanahan, U. S. Patent Application B426,439 (1976); Chem. Abstr., 84, P 164787x (1976).
- (5) C. Fauran, C. Douzon, G. Raymond and B. Pourias, French Patent, 2,269,938 (1975); Chem. Abstr., 84, P164789z (1976).
- (6) T. George, D. Mehta, R. Tahilramani, J. David and P. Talwalker, J. Med. Chem., 14, 335 (1971).
- (7) G. Martin, German Patent 2,240,043 (1973); Chem. Abstr., 78, P136302t (1973).
- (8) S. S. Parmar, A. K. Gupta, T. K. Gupta and H. H. Singh, J. Med. Chem., 15, 994 (1972).
- (9) T. Shen and C. P. Dorn, Jr., German Patent, 1,815,451 (1969); Chem. Abstr., 71, 91488v (1969).
- (10) P. F. Juby and T. W. Hudyma, J. Med. Chem., 12, 396 (1969).
- (11) C. Hoffmann and A. Dordilly, German Patent, 1,934,551 (1970); Chem. Abstr., 72, P90476y (1970).
- (12) R. Aries, French Patent, 1,580,970 (1969); Chem. Abstr., 72, 132,737s (1970).
- (13) R. Aries, French Patent, 1,584,861 (1970); Chem. Abstr., 74, 3634y (1972).
 - (14) L. I. Wiessel, Arthritis Rheum., 9, 551 (1966).
 - (15) L. I. Wiessel, J. New Drugs, 5, 263 (1965).
- (16) W. G. Finnegan, R. A. Henry and Robert Lofquist, J. Am. Chem. Soc., 80, 3908 (1958).
 - (17) M. Kziewonska, Spectrochim. Acta., 23A, 1195 (1967).
- (18) P. J. Kothari, V. Kishore, V. I. Stenberg and S. S. Parmar, J. Heterocyclic Chem., 5, 1101 (1978).
 - (19) R. M. Herbst and K. R. Wilson, J. Org. Chem., 22, 1142 (1957).
- (20) E. F. George and W. D. Riddell, German Patent, 2,310,049 (1973); Chem. Abstr., 80, 23539y (1974).
- (21) E. F. George and W. D. Riddell, British Patent, 1,381,840 (1975), Chem. Abstr., 82, 170970b (1975).
- (22) A. K. Sorensen and N. A. Klitgaard, *Acta. Chem. Scand.*, 26, 541 (1972).
- (23) K. Raman, S. S. Parmar and S. P. Singh, J. Heterocyclic Chem., 17, 1137 (1980).